quantum must be closer to the kinetic energy of the electron at the time of impact than to Ve. In other words, in a large number of impacts, at least, the electron transfers almost if not all of its kinetic energy to the quantum of radiation when it produces that quantum, and the radiation thus produced is nearly if not exactly monochromatic.
$\begin{aligned} \text { THE } & \text { STRUCTURE OF THE ATMOSPHERIC ABSORPTION } \\ & \\ & \text { BANDS OF OXYGEN }\end{aligned}$

By G. H. Dieke ${ }^{1}$ and Harold D. Babcock

Norman Bridge Laboratory, California Institute of Technology and Mount Wilson Observatory, Carnegie Institution of Washington

Communicated July 18, 1927
Although the atmospheric oxygen bands have been the subject of many investigations, the details of their structure have remained only partially explained. The earlier investigators ${ }^{2}$ did not have any theory to guide them and it can readily be understood that they often came to contradictory results. In the present paper we have tried to account for the structure of the bands as completely as possible. Our progress has been based on new wave-length measurements which we believe to be more accurate than the previous ones.

1. A recent paper by one of us, ${ }^{3}$ gives details of the derivation with the interferometer of the wave-lengths of the lines in the α, B and A bands best suited to that method. With these lines as standards, the other lines in these bands have been measured on spectrograms obtained with a large Michelson plane grating used in the third and fourth orders at 30feet focus. Such photographs were made at both high and low altitudes of the sun, since the faintest atmospheric lines are best observed with maximum air-path and the strongest ones with minimum air-path. At best the measurement of the widest lines is difficult and of relatively low accuracy. For example, some lines in the A band have a total width of about $1 A$, even when observed on Mount Wilson with solar altitude exceeding 45°. The finer lines, on the other hand, can be seen only with high resolving power, and even with the sun close to the horizon they are faint and hard to measure. For the widest lines in the A band the usual micrometer measurements were supplemented by the use of a registering, thermoelectric microphotometer, giving a definite increase of accuracy. Some of these lines give evidence that under more favorable conditions of observation they might be resolved into close pairs.

For the α^{\prime} band, $\lambda 5788-\lambda 5834$, we have made no measurements, but have derived the wave-lengths on the International system by
subtracting $0.216 A$ from the values given in Rowland's Table of Solar Wave-Lengths. The main part of this correction was obtained from the revision of the Rowland Table now in progress, with a slight alteration to allow for the difference between the standards of iron and those of neon. Throughout this paper all wave-lengths are expressed on the neon scale. Some small differences between wave-lengths stated here and those given in the work of Babcock to which reference has been made are accounted for by additional observations made specially for our purpose. The discordance between the values of Meggers ${ }^{4}$ and those given below is a natural result of the methods and approximations which he employed. The numerical data relating to the bands appear in table 1 . The band designated A^{\prime} is described later.

TABLE 1-Continued A^{\prime} Band			
ν_{vac}.	λ	$\underset{P_{2^{\prime}}(j)}{\text { I }}$	$\nu_{\text {vac }}$.
.....	7619.691	00	13,120.29
13,114.59	21.818	0	16.62
08.55	25.345	0	10.56
02.16	29.084	0	04.13
13,095.42	33.028	0	13,097.36
88.32	37.172	0	90.25
80.89	41.53	0	82.79
73.11	46.10	0	74.97
64.90	50.88	0d	66.80
		$\mathrm{R}^{2}{ }^{\prime}(\mathrm{j})$	
	7611.002	0	13,134.94
13,137.49	08.552	$1 d$	39.49
41.55	06.211	$1 d$	43.54
45.29	04.004	0	47.35
48.72	02.028	00	50.77
B Band			
$\nu_{\text {vac }}$.	λ	$\underset{P_{2}(j)}{\text { I }}$	$\nu_{\text {vac }}$.
	6883.832	10	14,522.792a
14,516.656a	85.754	11	$18.740 a$
$09.997 a$	88.948	13	12.008a
02.828a	92.369	14	04.804
14,495.140a	96.037	14	14,497.089a
$86.941 a$	99.954	14	$88.860 a$
$78.224 a$	6904.117	14	$80.123 a$
$68.988 a$	08.534	13	$70.865 a$
$59.235 a$	13.200	11	$61.099 a$
$48.972 a$	18.122	9	$50.810 a$
38.183a(S)	23.302	9	39.998a
26.88	28.728	4	28.69
15.05	34.421	2	16.84
02.70	40.381	1	04.46
89.81	46.614	0	14,391.54
		$\mathrm{R}_{\mathbf{2}}(\mathrm{j})$	
14,531.035a	6879.041	12	14,532.907a
$35.874 a$	76.715	13	37.824a
$40.202 a$	74.653	13	$42.183 a$
$43.992 a$	72.843	12	$46.013 a$
$47.266 a$	71.285	10	49.311a
$50.029 a$	69.942	7	$52.16 b$
$52.16 b$	68.915	7	$54.33 b$
$53.953 a$	68.106	6	56.05
$55.10 b$	67.554	5	57.22
$55.77 b$	67.247)		57.87
		6	
$55.77 b$	67.209)		57.95
55.36	67.403	1	57.54
$54.33 b$	67.865	0	56.56
52.83(S)	68.553	3	$55.10 b$

TABLE 1-Continued

2. The Empirical Structure of the Bands.-We number the lines (table 1) in such a way that the first complete doublet on both sides of the zero
line has the number two. The other lines will then have the successive even numbers, as the doublets belonging to the odd numbers are missing. We designate the longer wave-length component by a subscript one and the other component by a subscript two. Table 2 shows that the differences, $R_{i}(j)-P_{i}(j)$ are identical for the four bands under consideration,* ($i=1,2$), which means that $R_{i}(j)$ and $P_{i}(j)$ have the same initial \dagger state.

	TABLE 2				A^{\prime}
			$P_{i}(j)$		
	A	B	${ }_{\boldsymbol{\alpha}}$	α^{\prime}	
2	\{ 14.38	14.379	14.38	*14.26	
	14.17	14.167	14.17	14.08	
4	25.87	25.877	25.86	25.90	
	$\{25.82$	25.816	25.82	25.90	24.38
6	\{ 37.34	37.374	37.38	37.38	35.33
	$\{37.41$	37.379	37.39	37.40	35.36
8	\{ 48.88	48.852	48.86	48.89	46.13
	$\{48.97$	48.924	48.93	*48.85	46.18
10	$\{60.32$	60.325	60.24	*60.41	56.97
	\{ 60.49	60.451	60.45	60.44	57.10
12	¢ 71.79	71.805	71.81	*71.82	67.83
	72.00	*72.04	71.97	*71.96	67.98
14	\{ 83.25	*83.17	83.26	*83.01	
	83.54	*83.46	83.46	83.67	
16	$\{94.65$	94.718	94.70	94.64	
	* 95.09	94.95	*94.91	*95.29	
18	* 105.95	*106.03	105.98	*106.15	
	**106.38	106.41	*106.47	106.35	
20	$\{* 117.59$	*117.59			
	* *117.90	117.87			
22	$\left\{\begin{array}{r}128.98 \\ * 129.30\end{array}\right.$	*128.89			
	$\{* 129.30$	129.26			
24	140.33	140.31			
	140.72	140.70			
26	**151.69	*151.63			
	$\{152.11$	152.10			
28	* ${ }^{*} 163.02$	163.02			
	*163.48	*163.56			

We can, therefore, write

$$
\left.\begin{array}{r}
P_{i}(j)=F_{i}^{\prime}(j)-F_{i}^{\prime \prime}(j+1) \tag{1}\\
R_{i}(j)=F_{i}^{\prime}(j)-F_{i}^{\prime \prime}(j-1)
\end{array}\right\}
$$

The dependence on the final state cannot be tested by the combination principle, as we have no two bands with the same initial vibrational state. But the form (1) is the simplest assumption and makes the structure of the bands analogous to that of other well-known bands.

The lines can be represented approximately by a quadratic formula, though there are small but distinctive deviations in the P_{2} and R_{2} branch for small values of j. If we neglect these at first, we may write

$$
\begin{equation*}
F(j)=A+B m^{2}-\beta m^{4} \tag{2}
\end{equation*}
$$

in which A represents that part of the energy (divided by h) which is not dependent on the rotational quantum number; β is a small correction term which is due to the non-rigidity of the molecule. We want to calculate the constants which are involved in forming the bands. On account of (1) and (2), the differences tabulated in table 2 are equal to

$$
R_{i}(j)-P_{i}(j)=F_{i}^{\prime \prime}(j+1)-F_{i}^{\prime \prime}(j-1)=4 B_{i}^{\prime \prime} m_{i}-\left(8 m_{i}^{2}+8 m_{i}^{8}\right) \beta_{i}^{\prime \prime}
$$

and can be used to calculate the values for $B_{i}^{\prime \prime}, \beta_{i}^{\prime \prime}$ and m_{i} for the final state. In the same way, the constants for the initial state can be obtained from
$R_{i}(j+1)-P_{i}(j-1)=F_{i}^{\prime}(j+1)-F_{i}^{\prime}(j-1)=4 B_{i}^{\prime} m_{i}-\left(8 m_{i}^{2}+8 m_{i}^{3}\right) \boldsymbol{\beta}_{i}^{\prime}$.
Only the first ten lines (to $R(18)$ and $P(16)$ incl.) were used for the calculation of the constants in order to be sure that no higher terms have an appreciable influence, and because the wave-lengths of overlapping lines in the head, especially of the A band, cannot be determined with great accuracy. The values for the constants are given in table 3: n means the vibrational quantum number; the value for the zero line ν_{01} of each band is given in the row of its initial state. Not much significance can be attached to the values for the correction term β. The values of m calculated in this way are, for the first few terms:
final state

$m_{1}: 2.500$	4.500	6.500	8.499
$m_{2}: 2.448$	4.462	6.472	8.459
(B band $)$			
$m_{1}: 1.502$	3.501	5.504	7.502
$m_{2}:$	3.448	5.454	7.452

It is seen from this that the m-values for the F_{1}^{\prime} and $F_{1}^{\prime \prime}$ state are very nearly half integers, whereas the values for the F_{2}^{\prime} and $F_{2}^{\prime \prime}$ state are considerably lower. On the whole, the F_{2} terms cannot be so well represented
by a formula of the type (1), and there are distinct deviations for small values of the rotational quantum number. The significance of this will be discussed later on. The zero line for the P_{2} and R_{2} branch is approximately $1.9 \mathrm{~cm} .^{-1}$ higher than that of the P_{1} and R_{1} branch.

	B_{1}	B_{2}	LE 3	$\boldsymbol{\beta}_{3}$	201
Initial state					
$A, \quad n=0$	1.390	1.402	$5.75 \cdot 10^{-6}$	$10.63 \cdot 10^{-6}$	13,122.97
$B, \quad n=1$	1.372	$1.384\}$			14,525.72
$\alpha, \quad n=2$	1.354	1.364			15,902.50
$\alpha^{\prime}, \quad n=3$	1.336	1.346			17,251.19
$A^{\prime}, \quad n=1$	1.311	1.318	-	- -	13,123.00
Final state					
$n=0$	1.438	1.447	$6.31 \cdot 10^{-3}$	$7.92 \cdot 10^{-6}$	
$A^{\prime}, \quad n=0$	1.354	1.361			

The observed doublet separation, which is the same for all bands, can be accounted for with the above terms. If we express the deviation of m from half integer values in F_{2} by a linear term αm, the doublet separation becomes

$$
\begin{aligned}
& \Delta P(m)=\nu_{02}-\nu_{01}-B_{2}^{\prime \prime}+B_{1}^{\prime \prime}-\alpha^{\prime \prime}-2\left(B_{2}^{\prime \prime}-B_{1}^{\prime \prime}\right) m+\left(\alpha^{\prime}-\right. \\
& \left.\alpha^{\prime \prime}\right) m+\left(C_{2}-C_{1}\right) m^{2} \\
& \Delta R(m)=\nu_{02}-\nu_{01}-B_{2}^{\prime \prime}+B_{1}^{\prime \prime}+\alpha^{\prime \prime}+2\left(B_{2}^{\prime \prime}-B_{1}^{\prime \prime}\right) m+\left(\alpha^{\prime}-\right. \\
& \left.\alpha^{\prime \prime}\right) m+\left(C_{2}-C_{1}\right) m^{2} \\
& \left(C=B^{\prime}-B^{\prime \prime}\right) .
\end{aligned}
$$

These formulæ give all the properties of the observed doublet separation, although an exact quantitative test cannot be obtained, because the small differences $B_{2}-B_{1}, \alpha^{\prime}-\alpha^{\prime \prime}$, etc., are not known with sufficient accuracy. The value for the doublet separation of the zero lines is found to be 1.93. The zero lines follow the formula

$$
\nu_{01}=13122.965+1415.017 n-11.911 n^{2}-0.3525 n^{3}(n=0,1,2,3, \ldots)
$$

in which the constants differ only slightly from those calculated by Kratzer ${ }^{5}$ from the old' data. It is also seen from table 3 that the constants B^{\prime} have the linear dependence on the vibrational quantum number postulated by Kratzer's theory.

The A band includes a number of weak lines, and those in the tail are at once seen to form doublets of the same kind as the strong lines. In the head also doublets can be picked out, and then the constants can be calculated in the same way as for the strong branches. These are also given in table 3. The weak lines have been called A^{\prime}. It appears that the weak branches have exactly the same structure as the strong ones. The only difference is the value for the constant B. The zero lines for the strong and weak branches are the same within the limits of experimental error. The weak branches are too faint to be observed in the other bands. There is still a small number of unclassified faint lines of atmos-
pheric origin, but it is not certain whether they belong to these bands. They may be partly due to water vapor.

The significance of the empirical structure of the bands for the structure of the oxygen molecule is not yet satisfactorily cleared up in all points. Approximately we have $B=h / 8 \pi^{2} c J$, and from this it follows that the moment of inertia J for the O_{2}-molecule in its normal state is $19.27 \cdot 10^{-40}$, and in the excited state, $19.93 \cdot 10^{-40}$, which gives for the distance between the nuclei $1.205 \cdot 10^{-8}$ and $1.225 \cdot 10^{-8} \mathrm{~cm}$., respectively.
3. Mulliken ${ }^{6}$ has developed a systematic analysis of band spectra to which Hund ${ }^{7}$ gave a theoretical background. According to this theory the type of an electronic molecular term is determined by quantum numbers which are analogous to those used for the classification of line spectra. The resultant spin of the electrons, s, determines the multiplicity of the terms.

The components of the electronic angular momentum are σ_{k} and σ_{s}, and the spin along the nuclear axis is $\sigma=\sigma_{k}+\sigma_{s}$. If $\sigma_{k}=0,1,2, \ldots$, we have S, P, D, \ldots terms. For all particulars it is necessary to consult the above-mentioned papers.

The fact that both initial and final state of the atmospheric absorption bands are not single for zero rotation shows that neither can be a singlet nor an S state. It seems very probable that we have here a ${ }^{3} D^{3} P$ transition. For a ${ }^{3} P$ state $s=1, \sigma_{k}=1, \sigma=0,1,2$; for a ${ }^{3} D$ state $s=1$, $\sigma_{k}=2, \sigma=1,2,3$. Hund derives a selection rule $\Delta \sigma=0$, if $\sigma_{k}>0$, which is fulfilled, e.g., in the second positive nitrogen group. On account of this rule, only the levels with $\sigma=1$ and 2 can combine with each other. The fact that alternate rotational levels are suppressed because we have a symmetrical molecule eliminates the Q branches. There are, however, some difficulties in accounting for the missing lines. We confine ourselves to these few remarks about the electronic structure, as this will be discussed more fully, together with the electronic structure of the Runge bands, in a subsequent paper.

We are indebted to Dr. St. John for unpublished data on the revision of Rowland's Table of Solar Spectrum Wave-Lengths, to Mr. W. P. Hoge for assistance in some of the measurements, and to Dr. Pettit and Miss Ware for operating the microphotometer for us.

Remarks on the Tables

Intensities in A band from Meggers; in $B, \alpha, \alpha^{\prime}$, from Rowland.
S indicates a line influenced by a solar line.
(S) is used where such influence is possible, but doubtful.
a indicates lines for which wave-lengths have highest weight.
b indicates lines occurring in more than one place.

* in table 2 means that one of the lines involved is a b or an S line.

References

* j means here only the ordinal number of the lines.
\dagger The expressions initial and final state are always used from the point of emission.
${ }^{1}$ National Research Fellow.
${ }^{2}$ O. C. Lester, Astrophysical Journal, 20, 81, 1904. This paper contains the references to the preceding work. R. Fortrat, Ann. d. Phys., 3, 384, 1915; T. Heurlinger, Untersuchungen über die Bandenspektra.
${ }^{8}$ H. D. Babcock, Astrophysical Journal, 65, 140, 1927; Mt. Wilson Contr., No. 328.
${ }^{4}$ W. F. Meggers, Publications Allegheny Observ., 6, No. 3, 1919.
${ }^{5}$ A. Kratzer, Ann. d. Phys., 68, 122, 1922.
${ }^{6}$ R. S. Mulliken, Phys. Rev., 26, 561, 1925; Proc. Nat. Acad. Sci., 12, 144 and 151, 1926; Phys. Rev., 28, 481 and 1202, 1926; also R. T. Birge, Nature, 117, 300, 1926.
${ }^{7}$ F. Hund, Zs.f. Phys., 26, 657, 1926; 40, 742, 1927; 42, 93, 1927.

revision of rowland's preliminary tables of solar SPECTRUM WAVE-LENGTHS

By Charles E. St. John

Mount Wilson Observatory, Carnegie Institution of Washington, Pasadena
The first extensive list of wave-lengths in the solar spectrum was made by A. J. Ångström in 1868. ${ }^{1}$ In recognition of this work his name has been given to the unit of wave-length in the international system. ${ }^{2}$ In 1893 Rowland published "A New Table of Standard Wave-Lengths" containing several hundred lines in the solar spectrum. ${ }^{3}$ This represented the results of some ten or more years of investigation, during which period he constructed the ruling engine and produced the first concave grating. This table of wave-lengths so surpassed in accuracy all previous work that it received world-wide acceptance and was made the basis of his "Preliminary Table of Solar Spectrum Wave-Lengths, ${ }^{4 \prime}$ " which for a generation has been the world's standard and the vade-mecum of astronomers and physicists.

The starting point of the Rowland system was the mean wave-length of the D_{1} line of sodium as referred to the standard meter by five investigators:

	λ	wor.
Angström	5895.81	1
Müller and Kempf	5896.25	2
Kurlbaum	5895.90	2
Peirce	5896.20	5
Bell	5896.20	10
Mean 5896.156 in air at $20^{\circ} \mathrm{C}$. and 760 mm. pressure		

From the sodium line about 15 lines in the visual region were determined by the method of coincidences between spectra of different orders. The list was increased by interpolation, extended into the ultra-violet by photography, and during a period of eight or nine years the thousand lines, more or less; of the "New Table of Standards" were intertwined with each other in an immense number of ways. Rowland says, in a note, that the

